Abstract

A supramolecular complex composed of Ru(II) tris-bipyridine, tyrosine, and dipicolylamine was synthesized and characterized. This complex was attached to TiO2 nanocrystalline films via ester groups at the Ru(II) chromophore, and photoinduced multistep electron transfer was investigated by laser flash photolysis and electron paramagnetic resonance techniques. Following ultrafast electron injection from the metal-ligand charge transfer excited states of Ru(II) to the conduction band of TiO2, fast intramolecular electron transfer from the tyrosine moiety to the photogenerated Ru(III) was observed, characterized by a rate constant of similar to2 x 10(6) s(-1). By comparison of recovery kinetics at the isosbestic point with that of the reference compound lacking the tyrosine, it was found that the intramolecular electron-transfer efficiency is 90%. A hydrogen-bond-promoted electron-transfer mechanism is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call