Abstract

The current preoperative malignancy risk evaluation for thyroid nodules involves stepwise diagnostic modalities including ultrasonography, thyroid function serology and fine-needle aspiration (FNA) cytopathology, respectively. We aimed to substantiate the stepwise contributions of each diagnostic step and additionally investigate the diagnostic significance of quantitative chromogenic imprinted gene in-situ hybridization (QCIGISH)-an adjunctive molecular test based on epigenetic imprinting alterations. A total of 114 cytopathologically-diagnosed and histopathologically-confirmed thyroid nodules with complete ultrasonographic and serological examination records were evaluated using QCIGISH in the study. Logistic regression models for thyroid malignancy prediction were developed with the stepwise addition of each diagnostic modality and the contribution of each step evaluated in terms of discrimination performance and goodness-of-fit. From the baseline model using ultrasonography [area under the receiver operating characteristics curve (AUROC): 0.79; 95% confidence interval (CI): 0.71-0.86], significant improvements in thyroid malignancy discrimination were observed with the stepwise addition of thyroid function serology (AUROC: 0.82; 95% CI: 0.74-0.90; P=0.23) and FNA cytopathology (AUROC: 0.88; 95% CI: 0.81-0.94; P=0.02), respectively. The inclusion of QCIGISH as an adjunctive molecular test further advanced the preceding model's diagnostic performance (AUROC: 0.95; 95% CI: 0.91-1.00, P=0.007). Our study demonstrated the significant stepwise diagnostic contributions of standard clinical assessments in the malignancy risk stratification of thyroid nodules. However, the addition of molecular imprinting detection further enabled a more accurate and definitive preoperative evaluation especially for morphologically indeterminate thyroid nodules and cases with potentially discordant results among standard modalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.