Abstract

Purpose: To investigate the inter-device agreement and mean differences between a newly developed digital phoropter and the two standard methods (trial frame and manual phoropter). Methods: Refractive errors of two groups of participants were measured by two examiners (examiner 1 (E1): 36 subjects; examiner 2 (E2): 38 subjects). Refractive errors were assessed using a trial frame, a manual phoropter and a digital phoropter. Inter-device agreement regarding the measurement of refractive errors was analyzed for differences in terms of the power vector components (spherical equivalent (SE) and the cylindrical power vector components J0 and J45) between the used methods. Intraclass correlation coefficients (ICC’s) were calculated to evaluate correlations between the used methods. Results: Analyzing the variances between the three methods for SE, J0 and J45 using a two-way ANOVA showed no significant differences between the methods (SE: p = 0.13, J0: p = 0.58 and J45: p = 0.96) for examiner 1 and for examiner 2 (SE: p = 0.88, J0: p = 0.95 and J45: p = 1). Mean differences and ±95% Limits of Agreement for each pair of inter-device agreement regarding the SE for both examiners were as follows: Trial frame vs. digital phoropter: +0.10 D ± 0.56 D (E1) and +0.19 D ± 0.60 D (E2), manual phoropter vs. trial frame: −0.04 D ± 0.59 D (E1) and −0.12 D ± 0.49 D (E2) and for manual vs. digital phoropter: +0.06 D ± 0.65 D (E1) and +0.08 D ± 0.45 D (E2). ICCs revealed high correlations between all methods for both examiner (p < 0.001). The time to assess the subjective refraction was significantly smaller with the digital phoropter (examiner 1: p < 0.001; examiner 2: p < 0.001). Conclusion: “All used subjective methods show a good agreement between each other terms of ICC (>0.9). Assessing refractive errors using different subjective methods, results in similar mean differences and 95% limits of agreement, when compared to those reported in studies comparing subjective refraction non-cylcoplegic retinoscopy or autorefraction”.

Highlights

  • Uncorrected refractive errors, such as myopia, hyperopia and astigmatism, have a high impact on the prevalence of visual impairment or blindness, as recently reviewed by Naidoo and colleagues [1].Since it is known that the prevalence of refractive errors is increasing [2], its assessment will become one of the major tasks in the public health sector worldwide

  • The time to assess the subjective refraction was significantly smaller with the digital phoropter

  • Conclusion: “All used subjective methods show a good agreement between each other terms of ICC (>0.9)

Read more

Summary

Introduction

Uncorrected refractive errors, such as myopia, hyperopia and astigmatism, have a high impact on the prevalence of visual impairment or blindness, as recently reviewed by Naidoo and colleagues [1].Since it is known that the prevalence of refractive errors is increasing [2], its assessment will become one of the major tasks in the public health sector worldwide. The company EyeNetra (EyeNetra Inc., Somerville, MA, USA) developed a smartphone-based refraction for mobile measurements of refractive errors [3,4,5] that uses a pinhole optic to display a stripe pattern on the participant’s retina, where the task of the subject is to align a red and green stimulus [3].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call