Abstract

Organic Chemistry Certain ring-forming reactions in organic chemistry are efficient because the orbital symmetries match up in the reactants and products. Oxyallyl ions tend to react with dienes in this paradigm to form seven-membered rings. Under palladium catalysis, Trost et al. redirected this reaction toward more common five-membered tetrahydrofuran rings by appending an ester to the diene. Although that pathway is symmetry-forbidden, the electron-withdrawing ester appears to stabilize a key intermediate along a stepwise route to the smaller ring. Science , this issue p. [564][1] [1]: /lookup/doi/10.1126/science.aau4821

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.