Abstract

{112¯2} twinning commonly takes place in α-titanium (α-Ti). High-resolution transmission electron microscopies (HRTEM) explored various steps along {112¯2} coherent twin boundary. Topological model of {112¯2} twin revealed twinning disconnections (TDs) that are represented by (bi, ih{112¯2}) corresponding to a step height ih{112¯2} and a shear vector bi. Atomistic simulations were conducted to study the energies and kinetics of TDs. Combining microscopies and atomistic simulations, we concluded that (b3, 3h{112¯2}) is the elementary TD and (b1, h{112¯2}) is the reassembly TD. Steps observed in HRTEM thus can be treated as a reassembly of (b3, 3h{112¯2}) TDs and (b1, h{112¯2}) TDs. In addition, Electron Backscatter Diffraction (EBSD) maps revealed {112¯2}→{112¯1} double twins in α-Ti. Using two-dimensional and three-dimensional atomistic simulations, we demonstrated the nucleation of (b1, h{112¯2}) TD and {112¯2}→{112¯1} double twin through the interaction between basal <a> dislocation and {112¯2} twin. Our results enrich the understanding of {112¯2} twinning including TDs, steps, and {112¯1} secondary twins in hexagonal metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.