Abstract

We present a generalization of the connectivity-based hierarchy (CBH) of isodesmic-based correction schemes to a multilayered fragmentation platform for overall cost reduction while retaining high accuracy. The newly developed multilayered CBH approach, called stepping-stone CBH (SSCBH), is benchmarked on a diverse set of 959 medium-sized organic molecules. Applying SSCBH corrections to the PBEh-D3 density functional resulted in an average error of 0.76 kcal/mol for the full test set compared to accurate CCSD(T)-quality enthalpies and an even lower error of 0.44 kcal/mol on a subset containing only acyclic molecules. These results rival the traditional CBH-3 approach at a greatly reduced cost, allowing larger fragment corrections to be made at the MP2 level of theory rather than with G4. Our SSCBH approach will enable more widespread applications of CBH methods to a broader range of organic and biomolecular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.