Abstract
Intelligent optimization algorithms based on swarm principles have been widely researched in recent times. The Firefly Algorithm (FA) is an intelligent swarm algorithm for global optimization problems. In literature, FA has been seen as one of the efficient and robust optimization algorithm. However, the solution search space used in FA is insufficient, and the strategy for generating candidate solutions results in good exploration ability but poor exploitation performance. Although, there are a lot of modifications and hybridizations of FA with other optimizing algorithms, there is still a room for improvement. Therefore, in this paper, we first propose modification of FA by introducing a stepping ahead parameter. Second, we design a hybrid of modified FA with Covariance Matrix Adaptation Evolution Strategy (CMAES) to improve the exploitation while containing good exploration. Traditionally, hybridization meant to combine two algorithms together in terms of structure only, and preference was not taken into account. To solve this issue, preference in terms of user and problem (time complexity) is taken where CMAES is used within FA’s loop to avoid extra computation time. This way, the structure of algorithm together with the strength of the individual solution are used. In this paper, FA is modified first and later combined with CMAES to solve selected global optimization benchmark problems. The effectiveness of the new hybridization is shown with the performance analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.