Abstract

A stepped circular waveguide dual-mode (SCWDM) filter is fully investigated in this paper, from its basic characteristic to design formula. As compared to a conventional circular waveguide dual-mode (CWDM) filter, it provides more freedoms for shifting and suppressing the spurious modes in a wide frequency band. This useful attribute can be used for a broadband waveguide contiguous output multiplexer (OMUX) in satellite payloads. The scaling factor for relating coupling value M to its corresponding impedance inverter K in a stepped cavity is derived for full-wave EM design. To validate the design technique, four design examples are presented. One challenging example is a wideband 17-channel Ku-band contiguous multiplexer with two SCWDM channel filters. A triplexer hardware covering the same included bandwidth is also designed and measured. The measurement results show excellent agreement with those of the theoretical EM designs, justifying the effectiveness of full-wave EM modal analysis. Comparing to the best possible design of conventional CWDM filters, at least 30% more spurious-free range in both Ku-band and C-band can be achieved by using SCWDM filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.