Abstract
The goal of sign language recognition (SLR) is to help those who are hard of hearing or deaf overcome the communication barrier. Most existing approaches can be typically divided into two lines, i.e., Skeleton-based, and RGB-based methods, but both lines of methods have their limitations. Skeleton-based methods do not consider facial expressions, while RGB-based approaches usually ignore the fine-grained hand structure. To overcome both limitations, we propose a new framework called the Spatial-temporal Part-aware network (StepNet), based on RGB parts. As its name suggests, it is made up of two modules: Part-level Spatial Modeling and Part-level Temporal Modeling. Part-level Spatial Modeling, in particular, automatically captures the appearance-based properties, such as hands and faces, in the feature space without the use of any keypoint-level annotations. On the other hand, Part-level Temporal Modeling implicitly mines the long short-term context to capture the relevant attributes over time. Extensive experiments demonstrate that our StepNet, thanks to spatial-temporal modules, achieves competitive Top-1 Per-instance accuracy on three commonly used SLR benchmarks, i.e., 56.89% on WLASL, 77.2% on NMFs-CSL, and 77.1% on BOBSL. Additionally, the proposed method is compatible with the optical flow input and can produce superior performance if fused. For those who are hard of hearing, we hope that our work can act as a preliminary step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.