Abstract
Energy, building, and water networks are three interlinked critical infrastructures that need to be operated cooperatively to maximize the smart grid's economic benefits. In this paper, a mixed-integer linear programming (MILP) formulation is proposed to approach the economic dispatch (ED) problem for smart grids embedded with interdependent water and energy networks. Energy management of various building applications is considered by intelligently controlling the indoor temperature during occupied and unoccupied hours. To optimize the demand of water distribution system, pump's nonlinear scheduling and hydraulic factors and daily water usage of buildings are added to the proposed model. Piecewise linear approximation of univariate and bivariate nonlinear functions is used to convert the nonlinear problem to an MILP formulation. Several case studies were conducted to examine the impact of indoor temperature settings of the buildings, speed of pumps, battery efficiency, and end of day (EoD) battery and tank constraints on economic dispatch of the microgrid system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.