Abstract

The highly processive motor, myosin V, has an extremely long neck containing six calmodulin-binding IQ motifs that allows it to take multiple 36 nm steps corresponding to the pseudo-repeat of actin. To further investigate how myosin V moves processively on actin filaments, we altered the length of the neck by adding or deleting IQ motifs in myosin constructs lacking the globular tail domain. These myosin V IQ mutants were fluorescently labeled by exchange of a single Cy3-labeled calmodulin into the neck region of one head. We measured the step-size of these individual IQ mutants with nanometer precision and subsecond resolution using FIONA. The step-size was proportional to neck length for constructs containing 2, 4, 6, and 8 IQ motifs, providing strong support for the swinging lever-arm model of myosin motility. In addition, the kinetics of stepping provided additional support for the hand-over-hand model whereby the two heads alternately assume the leading position. Interestingly, the 8IQ myosin V mutant gave a broad distribution of step-sizes with multiple peaks, suggesting that this mutant has many choices of binding sites on an actin filament. These data demonstrate that the step-size of myosin V is affected by the length of its neck and is not solely determined by the pseudo-repeat of the actin filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.