Abstract
In the so-called ‘step-shape’ angular spin distribution model for layered systems, the non-collinear directions of the atomic magnetic moments are confined to the film plane and form a homogeneous fan spanning inside an (in-plane) angular interval Δφ centered at an angle φ0. A general approach for deriving the two parameters φ0 and Δφ via 57Fe Mössbauer spectroscopy measurements is discussed. The analysis extends our previously reported treatment, which assumed that the angular aperture Δφ develops symmetrically versus a fixed direction φ0 (e.g., the in-plane easy axis of magnetization) oriented either along or perpendicular to the in-plane projection of the Mössbauer γ-ray direction. The proposed approach is also applicable for those cases when not only the spin aperture Δφ is changing but also the aperture center φ0 is rotating under the influence of different external parameters, such as applied field, temperature, stress, etc. The method is suitable for applications to nanoscale layered heterostructures with in-plane uniaxial or unidirectional magnetic anisotropy. The method is applied to experimental data obtained on a 2-nm thick defected Fe layer with in-plane magnetic texture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.