Abstract

AbstractWe give a new approach to characterising and computing the set of global maximisers and minimisers of the functions in the Takagi class and, in particular, of the Takagi–Landsberg functions. The latter form a family of fractal functions $f_\alpha:[0,1]\to{\mathbb R}$ parameterised by $\alpha\in(-2,2)$ . We show that $f_\alpha$ has a unique maximiser in $[0,1/2]$ if and only if there does not exist a Littlewood polynomial that has $\alpha$ as a certain type of root, called step root. Our general results lead to explicit and closed-form expressions for the maxima of the Takagi–Landsberg functions with $\alpha\in(-2,1/2]\cup(1,2)$ . For $(1/2,1]$ , we show that the step roots are dense in that interval. If $\alpha\in (1/2,1]$ is a step root, then the set of maximisers of $f_\alpha$ is an explicitly given perfect set with Hausdorff dimension $1/(n+1)$ , where n is the degree of the minimal Littlewood polynomial that has $\alpha$ as its step root. In the same way, we determine explicitly the minima of all Takagi–Landsberg functions. As a corollary, we show that the closure of the set of all real roots of all Littlewood polynomials is equal to $[-2,-1/2]\cup[1/2,2]$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call