Abstract

In this paper, both software model visualization with path simulation and associated machining product are produced based on the step ring-based three-axis path planning to demo model-driven graphics processing unit (GPU) feature in tool path planning and 3D image model classification by GPU simulation. Subtractive 3D printing (i.e., 3D machining) is represented as integration between 3D printing modeling and computer numerical control (CNC) machining via GPU simulated software. Path planning is applied through visualization of surface material removal in high-resolution and 3D path simulation via ring selective path planning based on accessibility of path through pattern selection. First, the step ring selects critical features to reconstruct computer-aided design (CAD) design model as stereolithography (STL) voxel, and then, local optimization is attained within interested ring area for time and energy saving of GPU volume generation as compared to global automatic path planning with longer latency. The reconstructed CAD model comes from an original sample (GATech buzz) with 2D image information. CAD model for optimization and validation is adopted to sustain manufacturing reproduction based on system simulation feedback. To avoid collision with the produced path from retraction path, we pick adaptive ring path generation and prediction in each planning iteration, which may also minimize material removal. Moreover, we did partition analysis and G-code optimization for large-scale model and high density volume data. Image classification and grid analysis based on adaptive 3D tree depth are proposed for multilevel set partition of the model to define no cutting zones. After that, accessibility map is computed based on accessibility space for rotational angular space of path orientation to compare step ring-based pass planning verses global path planning of all geometries. Feature analysis via central processing unit (CPU) or GPU processor for GPU map computation contributes to high-performance computing and cloud computing potential through parallel computing application of subtractive 3D printing in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.