Abstract
Carrier multiplication by generation of two or more electron-hole pairs following the absorption of a single photon may lead to improved photovoltaic efficiencies and has been observed in nanocrystals made from a variety of semiconductors, including silicon. However, with few exceptions, these reports have been based on indirect ultrafast techniques. Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield. As the photon energy increases, the quantum yield is expected to remain constant, or to decrease as a result of new trapping and recombination channels being activated. Instead, we observe a step-like increase in quantum yield for larger photon energies that is characteristic of carrier multiplication. Modelling suggests that carrier multiplication is occurring with high efficiency and close to the energy conservation limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.