Abstract

Atomic force microscopy studies of Ge/Si(001) molecular beam epitaxy growth reveal a crucial new role of surface steps in the 2D to 3D transition. At or near step flow we show that {ital S}{sub {ital A}} steps undergo a stress-driven triangular step instability. The resulting spatial variation of surface strain, although small, can dramatically influence the activation barrier for 3D island nucleation. This provides a surprising kinetic route for the onset of 3D growth associated with the apex regions of triangular steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.