Abstract
Numerical methods for solving boundary value problems that do not require generation of mesh to approximate the analysis domain have been referred to as mesh-free methods. While many of these are “mesh less” methods that do not have connectivity between nodes, a subset of these methods uses a structured mesh or grid for the analysis that does not conform to the geometry of the domain of analysis. Instead the geometry is represented using implicit equations. In this paper we present a method for constructing step functions of solids whose boundaries are represented using implicit equations. Step functions can be used to compute volume integrals over the solid that are needed for mesh free analysis. The step function of the solid has a unit value within the solid and zero outside. A level set of this step function can then be defined as the boundary of the solid. Boolean operators are defined in this paper that enable step functions of half-spaces and primitives to be combined to construct a single step function for more complex solids. Application of step functions to analysis using nonconforming mesh is illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.