Abstract

Development of efficient photocatalysts for efficient recalcitrant organic pollutants degradation is of great significance. Herein, the step-doped disulfide vacancies S-scheme Cu3SnS4/L-BiOBr (CTS/L-BiOBr) heterojunction photocatalyst was prepared for ciprofloxacin (CIP) degradation. X-ray photoelectron spectroscopy (XPS) analysis, ultraviolet photo-electron spectroscopy (UPS) analysis, band structure and dominant radicals' identification together verified that the transfer of photogenerated carriers conformed to the S-scheme mechanism. Benefited from the interfacial electric field (IEF) of the S-scheme heterojunction and incorporation of L-cysteine with introducing S-vacancies and surface functional groups (-NH2, -COO-), photogenerated charges generation and separation of the CTS/L-BiOBr(10) were greatly improved. With ·OH and h+ as dominant reactive species, CIP removal reached 93% using CTS/L-BiOBr(10) within 180min of visible light irradiation, which was 3.5 times and 2.6 times of pristine Cu3SnS4 and L-BiOBr, respectively. Moreover, possible CIP degradation pathways were proposed and the degradation intermediates ecotoxicity were evaluated. This study could provide reference for designing efficient S-scheme photocatalysts for recalcitrant wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.