Abstract
Using extended time series scanning transmission electron microscopy, we investigate structural fluctuations at an incommensurate grain boundary in Au. Atomic-resolution imaging reveals the coalescence of two interfacial steps, or disconnections, of different height via coordinated motion of atoms along close-packed directions. Numerical simulations uncover a transition pathway that involves constriction and expansion of a characteristic stacking fault often associated with grain boundaries in face-centered cubic materials. It is found that local atomic fluctuations by enhanced point defect diffusion may play a critical role in initiating this transition. Our results offer new insights into the collective motion of atoms underlying the lateral advance of steps that control the migration of faceted grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.