Abstract
In this paper, we consider integrating the scalar auxiliary variable time discretization with the virtual element method spatial discretization to obtain energy-stable schemes for Allen–Cahn-type gradient flow problems. In order to optimize CPU time during calculations, we propose two step-by-step solving SAV algorithms by introducing a novel auxiliary variable to replace the original one. Then, linear, decoupled, and unconditionally energy-stable numerical schemes are constructed. However, due to truncation errors, the auxiliary variable is not equivalent to the continuous case in the original definition. Therefore, we propose a novel relaxation technique to preserve the original energy dissipation rule. It not only retains all the advantages of the above algorithms but also improves accuracy and consistency. Finally, a series of numerical experiments are conducted to demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.