Abstract

To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high-quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3 C2 Tx ) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric-Ti3 AlC2 MAX phase and delamination of the etched multilayered Ti3 C2 Tx MXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3 AlC2 , pre-etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x-ray diffraction, atomic force microscopy, and ellipsometry. The Ti3 C2 Tx film made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3 C2 Tx MXene synthesis as the supporting information for this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.