Abstract

When successive ridges of distant mountains are seen, observers often report that, near the ridge where the brightness changes abruptly, the upper part of the nearer ridge appears darker than at its lower portions. Similarly, they report that the base of the more distant mountain seems brighter adjacent to the nearer ridge than on its upper portions. The explanation of this phenomenon, known as the step contrast effect, is a special case of Mach bands. It is usually attributed to a visual illusion involving lateral inhibition in the eye, which is most apparent in the vicinity of step brightness changes. Using analytic techniques and numerical integrations to simulate the airlight-induced brightness distributions of such scenes, we show that in many cases the perceived brightness distribution is qualitatively similar to the true brightness distribution and thus is not a visual illusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.