Abstract

Long-term success of modern therapies for myocardial ischemia is limited by restenosis, with proliferation and migration of vascular smooth muscle cells (VSMC) as key events. Since findings in recent years indicate, that the Platelet Derived Growth Factor (PDGF) is an important selective factor in mitogenic and motogenic pathways of VSMC, different concepts for reducing restenosis by inhibiting PDGF signaling have been investigated, with local delivery of small receptor kinase inhibitors looking most promising. We tested the stent-based delivery of the PDGF-receptor inhibitor D-65495, a bis( 1H-2-indolyl)methanone, in the rabbit iliac artery model of restenosis. New Zealand white rabbits underwent balloon dilation of iliac arteries for implantation of D-65495-coated or non-coated (solvent, either DMSO or 90%THF / 10% DMSO) coronary stents. After 4 weeks stents were removed and neointima formation in medial and proximal/ distal stent sections was histomorphometrically and immunohistochemically analyzed. Arteries with D-65495 eluting stents showed an up to 50% reduced restenosis compared to control stents. Also, the neointimal area was reduced, but there were no significant differences in injury score. Importantly, endothelialization was similar for control stents as well as for D-65495-coated stents, suggesting absence of a general cytostatic effect of the inhibitor. The impact of D-65495 on PDGF-receptor signaling in the vessel wall was indirectly assessed by immunohistochemical staining for activated protein kinase Akt, and PCNA as a proliferation marker and revealed some reduction for the inhibitor-treated vessels. In conclusion, the application of D-65495 caused a significant decrease in neointima formation, further supporting the concept of using locally released PDGF-receptor kinase inhibitors as anti-restenotic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.