Abstract
Periodontitis is very prevalent worldwide and is one of the major causes of tooth loss in adults. About 80% of the worldwide population use medicinal plants for their health care. Stemodia maritima L. (S. maritima) antioxidant and antimicrobial effects in vitro as well as anti-inflammatory properties. Herein, the potential therapeutic effect of S. maritima was assessed in rats subjected to experimental periodontitis (EP). EP was induced in female Wistar rats by nylon thread ligature around 2nd upper left molars for 11 days. Animals received (per os) S. maritima (0.2; 1 or 5 mg/kg) or vehicle (saline + DMSO) 1 h before ligature and then once daily for 11 days. The naive group had no manipulation. After this time-point, the animals were terminally anesthetized, and the maxillae were removed for morphometric and histological analyzes (HE). Gingival tissues were dissected to cytokine levels detection (TNF-α, IL1-β, CINC-1, and IL-10), enzymes superoxide dismutase (SOD), and catalase (CAT) analysis, as well as gene expression (TNF-α, IL-1β, RANK, and iNOS) by qRT-PCR. Systemic parameters (weight variation, plasma levels of hepatic enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT), creatinine, total alkaline phosphatase (TALP), and bone alkaline phosphatase (BALP) were performed. Histological analysis of the stomach, liver, kidney, and heart was also performed. S. maritima (5 mg/kg) decreased alveolar bone loss, TNF-α and CINC-1 gingival levels, oxidative stress, and transcription of TNF-α, IL1-β, RANK, and iNOS genes. It elevated both BALP activity and IL-10 gingival levels. The animals showed no any signs of toxicity. In conclusion, S. maritima reduced pro-inflammatory cytokine production, oxidative stress, and alveolar bone loss in a pre-clinical trial of periodontitis. S. maritima is a potential tool for controlling the development of periodontitis.
Highlights
Current concepts define periodontitis as a chronic inflammatory disease that compromises the integrity of the tooth-supporting tissues
Data indicated that S. maritima 5 mg/kg was the most effective dose protecting against alveolar bone loss (ABL)
Rat models have fewer limitations than in vitro models that cannot reproduce the complexity of interactions among the oral microbiome, environmental factors, and the immune/inflammatory host response (Struillou et al, 2010; Oz and Puleo, 2011; Hajishengallis et al, 2015)
Summary
Current concepts define periodontitis as a chronic inflammatory disease that compromises the integrity of the tooth-supporting tissues. It is an imbalance between the polymicrobial biofilm and the immune-inflammatory response and includes genetic and environmental risk factors (Genco and Borgnakke, 2013; Hajishengallis, 2014). Mechanical therapy and surgical procedures have been used to treat periodontitis (Wang et al, 2014). The major disadvantage of these agents is the development of bacterial resistance and gastric/renal toxicity. The search for newer and safer therapeutic agents continues to overcome these limitations. The use of plant extracts has gained popularity (Alviano and Alviano, 2009; Chandra Shekar et al, 2015; Kala et al, 2015; Ramesh et al, 2016) and some of these extracts have been used to treat periodontitis or repair bone defects (Guimarães et al, 2016; Lima et al, 2017; Oliveira et al, 2017)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.