Abstract

BackgroundExtensive research has indicated that tumor stemness promotes tumor progression. However, the underlying role of stemness-related genes (SRGs) in esophageal cancer (ESCA) remains unclear.MethodsThis study identified differentially expressed stemness-related (DESR) messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ESCA, and correlated them with the clinical features of patients with ESCA to develop a prognostic risk assessment model. Functional analysis, protein-protein interaction (PPI) analysis, competing endogenous RNA (ceRNA) networks, and tumor-infiltrating immune cell analyses were performed to corroborate the results obtained from the model.ResultsCorrelation analysis of the stemness enrichment scores revealed 1,106 DESR genes (DESRGs), 84 DESRmiRNAs, and 320 DESRlncRNAs were identified from The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) dataset. Network clustering was performed and the top 20 connection points were identified, including CDC20 that connects to 136 adjacent nodes. A ceRNA network was constructed, including 17 DESRmiRNAs, 44 DESRlncRNAs, and 55 DESRGs.ConclusionsNCAPG [log2fold change (FC) =1.81; q value =2.68×10−11] was significantly upregulated in ESCA and positively correlated with resting natural killer (NK) cells, suggesting that human NK cells rest via the overexpression of NCAPG in ESCA. hsa-miR-1269a is significantly upregulated in ESCA patients with poor prognostic features. CD4+ resting memory T cells (P<0.01) were significantly negatively correlated with hsa-miR-1269a. The insights presented in this study will contribute to the development of innovative therapeutics for the treatment of patients with ESCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call