Abstract
The presence of macrophytes in the littoral zone provide prey animals with protection from predators. Two macrophyte characters, stem density and branching, are known to hinder predator foraging in macrophyte beds. Stem stiffness is a character that allows the macrophyte to withstand current power in the intertidal zone, but its effect on predator movements in macrophyte beds has not been studied to date. In this study I examined whether the foraging success of predators is constrained by stem stiffness, as well as stem density and the presence of branches. Artificial macrophytes were constructed using two types of rubber that differed in stiffness. The newt Cynops ensicauda popei and larvae of the damselfly Paracercion melanotum were used as predator and prey, respectively, in this model system. The results revealed that all three plant characters studied influenced the survival rate of prey. Stiff stems consistently increased the survival rate compared with flexible stems. Stem density had the highest positive influence on survival rate. The direct effect of branches was negative and minute, but it altered the dependency on stem density. Although stiffness did have an effect on the survival rate of prey, its magnitude was relatively low. The effect of stiffness in other settings should be examined in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.