Abstract

A class of stem-loop DNA-assisted silicon nanowires (SiNWs)-based fluorescent biosensor is presented in this report. Significantly, the sensor enables rapid and sensitive detection of DNA targets with a concentration as low as 1 pM. Moreover, the large planar surface of SiNWs facilitates simultaneous assembly with different DNA strands, which is favorable for multiplexed DNA detection. On the other hand, the SiNWs-based sensor is highly efficacious for detecting heavy metal ions. Mercury ions (Hg(2+)) of low concentrations (e.g., 5 pM) are readily identified from its mixture with over 10 kinds of interfering metal ions, even in real water samples. Given that SiNWs can be fabricated in a facile, reproducible and low-cost manner, this kind of SiNWs-based high-performance sensor is expected to be a practical analytical tool for a variety of biological and environment-protection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.