Abstract

Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Highlights

  • There is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society

  • We focus on engineering design as a core link in the problem addressed in this article, namely, the Aerospace Engineering Challenge, as described in the “Methods” section

  • Research question 1: What was the nature of students’ initial designs and design processes? In addressing the nature of students’ initial designs, consideration is first given to the annotated features identified in the analysis of the students’ sketches, which applied to the analysis of their redesigns

Read more

Summary

Introduction

There is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. One aspect that remains in need of greater attention is the inclusion of engineering experiences in STEM curricula, especially at the elementary level, even though the contributions of engineering have been well documented It has been noted, for example, how such experiences can develop young students’ appreciation and understanding of the various roles of engineering in shaping societies and how it can contextualize mathematics and science principles to enhance achievement, motivation, and problem solving (Cunningham and Lachapelle 2014; Diaz and King 2007; English 2015; Holmes et al 2007; Moore et al 2014a; Stohlmann et al 2012; Zawojewski et al 2008). What is perhaps not emphasized sufficiently in the literature is how engineering can link students’ learning across other disciplines such as literacy, history, and geography (Hudson et al 2014; Miaoulis 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.