Abstract

Stable femoral fixation during uncemented total hip arthroplasty is critical to allow for subsequent osseointegration of the prosthesis. Varying stem designs provide surgeons with multiple options to gain femoral fixation. The purpose of this study was to compare the initial fixation stability of cylindrical and tapered stem implants using two different underreaming techniques (press-fit conditions) for revision total hip arthroplasty (THA). A finite element femur model was created from three-dimensional computed tomography images simulating a trabecular bone defect commonly observed in revision THA. Two 18-mm generic femoral hip implants were modeled using the same geometry, differing only in that one had a cylindrical stem and the other had a 2 degree tapered stem. Surgery was simulated using a 0.05-mm and 0.01-mm press-fit and tested with a physiologically relevant loading protocol. Mean contact pressure was influenced more by the surgical technique than by the stem geometry. The 0.05-mm press-fit condition resulted in the highest contact pressures for both the cylindrical (27.35 MPa) and tapered (20.99 MPa) stems. Changing the press-fit to 0.01-mm greatly decreased the contact pressure by 79.8% and 78.5% for the cylindrical (5.53 MPa) and tapered (4.52 MPa) models, respectively. The cylindrical stem geometry consistently showed less relative micromotion at all the cross-sections sampled as compared to the tapered stem regardless of press-fit condition. This finite element analysis study demonstrates that tapered stem results in lower average contact pressure and greater micromotion at the implant-bone interface than a cylindrical stem geometry. More studies are needed to establish how these different stem geometries perform in such non-ideal conditions encountered in revision THA cases where less bone stock is available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call