Abstract

Towards the identification of entophytic fungal taxa with potential for crop improvement, we characterized and compared fungal endophyte communities (FECs) from domesticated bread wheat and two wheat ancestors, Aegilops sharonensis and Triticum dicoccoides. Data generated by next generation sequencing identified a total of 1666 taxa. The FECs in the three plant species contained high proportions of random taxa with low abundance. At plant species level, the majority of abundant taxa were common to all host plants, and the collective FECs of each of the three plant species had similar diversity. However, FECs from the wild plants in specific sites were more diverse and had greater richness than wheat FECs from corresponding specific fields. The wild plants also had higher numbers of differentially abundant fungal taxa than wheat, with Alternaria infectoria being the most abundant species in wild plants and Candida sake the most abundant in wheat. Network analysis on co-occurrence association revealed a small number of taxa with a relatively high number of co-occurrence associations, which might be important in community assembly. Our results show that the actual endophytic cargo in cultivated wheat plants is limited relative to wild plants, and highlight putative functional and hub fungal taxa with potential for wheat improvement.

Highlights

  • Terrestrial plants contain communities of fungal endophytes that occupy all plant parts, from roots to seeds

  • Sharon goatgrass (A. sharonensis) plants were collected from four sites, and wild wheat (T. dicoccoides) plants were collected in three sites

  • The results indicated that core taxa with high degrees and eigenvector centralities are not necessarily highly abundant in the community, as the most significant association were found between less abundant genera including Crocicreas, Pringsheimia, Kondoa, and Verrucocladosporium

Read more

Summary

Introduction

Terrestrial plants contain communities of fungal endophytes that occupy all plant parts, from roots to seeds. A small number of fungal genera, mainly Epichloë and Piriformospora, include specific mutualistic species [4,5], but the vast majority of fungal endophytes are still defined as commensals because they have no obvious impact on their hosts [6,7]. In this respect, it is important to distinguish between sporadic and rare taxa, and the more stable and predominant taxa, which might be part of the core microbiome. With the accelerated accumulation of generation sequencing (NGS) data on plant microbiomes, the challenges ahead are to define core versus sporadic taxa [12], differentiate between mutualists and commensals [13], and identify hub taxa and functional species [11,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.