Abstract

Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo gained particular interest in conveying stem cell related attributes of rejuvenation, which will be discussed here in the context of IVDD.

Highlights

  • Tissues and organs of the aging human body originate from a fertilized oocyte. As this totipotent single cell zygote embarks on its journey of life, most daughter cells will succumb to terminal differentiation eventually followed by death (Kraus and Lufkin, 2017)

  • Harnessing or blocking “stemness” is an intriguing approach taken by the fields of regenerative medicine and oncology alike to replenish ailing tissues and organs such as a degenerating intervertebral disc (IVD) or to stop malignant cell growth (Sng and Lufkin, 2012; Sivakamasundari and Lufkin, 2013; Kraus et al, 2017; Li et al, 2019)

  • IPSC and transdifferentiated somatic cells (TDSC) might be impractical and uneconomical if derived de-novo for each patient (Kamao et al, 2014); embryonic stem cells (ESC) bear ethical concerns and TDSC are ideally based on detailed knowledge of interacting signaling pathways, which is still lacking for most vertebrate cell types

Read more

Summary

Introduction

Tissues and organs of the aging human body originate from a fertilized oocyte. As this totipotent single cell zygote embarks on its journey of life, most daughter cells will succumb to terminal differentiation eventually followed by death (Kraus and Lufkin, 2017). IVDs are composed of a hydrogel-like, inner nucleus pulposus (NP) rich in extracellular matrix (ECM) that is encapsulated in the annulus fibrosus (AF) and sandwiched by cartilaginous endplates (CEP) (Bibby et al, 2001; Sivakamasundari and Lufkin, 2012; Sivakamasundari and Lufkin, 2013).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.