Abstract

Stem cells have emerged as important players in the generation and maintenance of many tissues. However, the accurate in vitro simulation of the native stem cell niche remains difficult due at least in part to the lack of a comprehensive definition of the critical factors of the stem cell niche based on in vivo models. Three-dimensional (3D) cell culture systems have allowed the development of useful models for investigating stem cell physiology particularly with respect to their ability to sense and generate mechanical force in response to their surrounding environment. We review the use of 3D culture systems for stem cell culture and discuss the relationship between stem cells and 3D growth matrices including the roles of the extracellular matrix, scaffolds, soluble factors, cell-cell interactions and shear stress effects within this environment. We also discuss the potential for novel methods that mimic the native stem cell niche in vitro as well as the current associated challenges.

Highlights

  • Stem cells have emerged as important players in the generation and maintenance of many tissues such as fat, nerves, and bones as well as in disease states such as diabetes and cancer (Hay 2013)

  • Factors within the extracellular environment have been shown to influence the differentiation of stem cells, which has led investigators to focus on the extracellular matrix (ECM), growth scaffolds, soluble growth factors, shear stress effects, and other components of the extracellular environment

  • This study suggests that Embryonic stem cells (ESCs) differentiation depends on the appropriate ECM scaffold, which could have major implications for tissue engineering applications

Read more

Summary

Introduction

Stem cells have emerged as important players in the generation and maintenance of many tissues such as fat, nerves, and bones as well as in disease states such as diabetes and cancer (Hay 2013). Factors within the extracellular environment have been shown to influence the differentiation of stem cells, which has led investigators to focus on the extracellular matrix (ECM), growth scaffolds, soluble growth factors, shear stress effects, and other components of the extracellular environment.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.