Abstract

In sharp contrast to the adult mammalian cochlea, which lacks regenerative ability, the mature avian cochlea, or basilar papilla (BP) is capable of complete recovery from hearing loss after damage. Avian sensory hair cell regeneration relies on rousing quiescent supporting cells to proliferate or transdifferentiate after hair cell death. Unlike mammalian cochlear supporting cells, which have clearly defined subtypes, avian BP supporting cells are deceptively indistinguishable and molecular markers have yet to be identified. Despite the importance of supporting cells as the putative stem cells in avian regeneration, it is unknown whether all supporting cells possess equal capability to give rise to a hair cell or if a specialized subpopulation exists. In this perspective, we reinvigorate the concept of a stem cell in the BP, and form comparisons to other regenerating tissues that show cell-cycle reentry after damage. Special emphasis is given to the structure of the BP and how anatomy informs both the potential, intrinsic heterogeneity of the supporting cell layer as well as the choice between mitotic and nonmitotic regenerative strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.