Abstract

Tendon-bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon-bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon-bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon-bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow-derived mesenchymal stem cells (bMSCs) to emerging ACL-derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon-bone healing. This review describes the current understanding of tendon-bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.