Abstract

The C. elegans germ line has emerged as an important model for -understanding how a stem cell population is maintained throughout the life of the animal while still producing the gametes necessary for propagation of the species. The stem cell population in the adult hermaphrodite is relatively large, with stem cells giving rise to daughters that appear intrinsically equivalent; however, some of the daughters retain the proliferative fate while others enter meiotic prophase. While machinery exists for cells to progress through the mitotic cell cycle and machinery exists for cells to progress through meiotic prophase, central to understanding germ line development is identifying the genes and regulatory processes that determine whether the mitotic cell cycle or meiotic prophase machinery will be utilized; in other words, the genes that regulate the switch of germ cells from the proliferative stem cell fate to the meiotic development fate. Whether a germ cell self-renews or enters meiotic prophase is largely determined by its proximity to the distal tip cell (DTC), which is the somatic niche cell that caps the distal end of the gonad. Germ cells close to the DTC have high levels of GLP-1 Notch signaling, which promotes the proliferative fate, while cells further from the DTC have high activity levels of the GLD-1 and GLD-2 redundant RNA regulatory pathways, as well as a third uncharacterized pathway, each of which direct cells to enter meiotic prophase. Other factors and pathways modulate this core genetic pathway, or work in parallel to it, presumably to ensure that a tight balance is maintained between proliferation and meiotic entry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call