Abstract
This article reviews the physical principles of stem cell populations as active many-particle systems that are able to self-renew, control their density, and recover from depletion. We illustrate the dynamical and statistical hallmarks of homeostatic mechanisms, from stem cell density fluctuations and transient large-scale oscillation dynamics during recovery to the scaling behavior of clonal dynamics and front-like boundary propagation during regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.