Abstract
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human-based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell-derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem cell-based approaches in fulfilling the need for human-based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell-derived astrocytes have demonstrated functional activities that are equivalent to those observed in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.