Abstract

The fundamental basis of our work is that organs are generated by multipotent stem cells, whose properties we must understand to control tissue assembly or repair. Central nervous system (CNS) stem cells are now recognized as a well-defined population of precursors that differentiate into cells that are indisputably neurons and glial cells. Work from our group played an important role in defining stem cells of the CNS. Embryonic stem (ES) cells also differentiate to specific neuron and glial types through defined intermediates that are similar to the cellular precursors that normally occur in brain development. There is convincing evidence that the differentiated progeny of ES cells and CNS stem cells show expected functions of neurons and glia. Recent progress has been made on three fundamental developmental processes: (i) cell cycle control; (ii) the control of cell fate; and (iii) early steps in neural differentiation. In addition, our work on CNS stem cells has developed to a stage where there are clinical implications for Parkinson's and other degenerative disorders. These advances establish that stem cell biology contributes to our understanding of brain development and has great clinical promise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.