Abstract

Stem cells can be used to treat a variety of diseases and several recent studies in animal models demonstrate the potential of bioengineering strategies targeting adult and embryonic stem cells. In order to obtain the desired cells for transplantation, stem cell bioengineering approaches entail the manipulation of environmental signals influencing cell survival, proliferation, self-renewal and differentiation. In that regard, multivariate analytical approaches have been used with success to optimise different stem cell culture processes. The genetic or molecular enhancement of stem cells is also a powerful means to control their proliferation or differentiation or to correct genetic defects in recipients. In the future, systems-level approaches have the potential to revolutionise the field of stem cell bioengineering by improving our understanding of regulatory networks controlling cellular behaviour. This advance in basic biology will be instrumental for the implementation of many stem cell-based regenerative therapies at the clinical level, as treatment accessibility will depend on the development of robust technologies to produce sufficient cell numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.