Abstract

Human pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, combined with sophisticated bioinformatics methods, are powerful tools to predict developmental chemical toxicity. Because cell differentiation is not necessary, these cells can facilitate cost-effective assays, thus providing a practical system for the toxicity assessment of various types of chemicals. Here we describe how to apply machine learning techniques to different types of data, such as qRT-PCRs, gene networks, and molecular descriptors, for toxic chemicals, as well as how to integrate these data to predict toxicity categories. Interestingly, our results using 20 chemical data for neurotoxins (NTs), genotoxic carcinogens (GCs), and nongenotoxic carcinogens (NGCs) demonstrated that the highest and most robust prediction performance was obtained by using gene networks as the input. We also observed that qRT-PCR and molecular descriptors tend to contribute to specific toxicity categories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.