Abstract

The giant moss Dendroligotrichum dendroides s.l. grows as self-supporting plants up to 40 cm in height in forest habitats in Chile and New Zealand. This moss represents one of the tallest self-supporting bryophytes. Biomechanical tests indicate that the stems can develop a high degree of stiffness (Young’s modulus) via a dense hypodermal sterome that is comparable with that of woody stems of vascular plants. A comparison with mechanical properties of other terrestrial and aquatic mosses indicates that different moss growth and life forms can produce very different mechanical architectures. Values of stem stiffness can vary between different growth forms of mosses to a comparable extent to that observed among diverse growth forms of vascular plants. Plants varying profoundly in overall size, development, and phylogenetic position nevertheless appear to develop comparable mechanical adaptations and growth forms in response to certain environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call