Abstract

Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact ($\sigma_v \gtrsim 20 \, {\rm km s^{-1}}$) star clusters including young massive star clusters ($10^5 \lesssim M/M_\odot \lesssim 10^7$, $age \lesssim 500$~Myrs), intermediate age clusters ($10^5 \lesssim M/M_\odot \lesssim 10^7$, $age \approx 1-4$~Gyrs), and globular clusters ($10^5 \lesssim M/M_\odot \lesssim 10^7$, $age \gtrsim 10$~Gyrs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.