Abstract

We present numerical studies of the properties of the stellar velocity distribution in galactic disks which have developed a saturated, two-armed spiral structure. In previous papers we used the Boltzmann moment equations (BME) up to second order for our studies of the velocity structure in self-gravitating stellar disks. A key assumption of our BME approach is the zero-heat flux approximation, i.e. the neglection of third order velocity terms. We tested this assumption by performing test particle simulations for stars in a disk galaxy subject to a rotating spiral perturbation. As a result we corroborated qualitatively the complex velocity structure found in the BME approach. It turned out that an equilibrium configuration in velocity space is only slowly established on a typical timescale of 5 Gyrs or more. Since many dynamical processes in galaxies (like the growth of spirals or bars)act on shorter timescales, pure equilibrium models might not be fully appropriate for a detailed comparison with observations like the local Galactic velocity distribution. Third order velocity moments were typically small and uncorrelated over almost all of the disk with the exception of the 4:1 resonance region (UHR). Near the UHR (normalized) fourth and fifth order velocity moments are still of the same order as the second and third order terms. Thus, at the UHR higher order terms are not negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.