Abstract

We present a statistical model for estimating the effects of stellar encounters on orbits in the outer Solar System, focussing on the scattered disk at <10 3 AU from the Sun. We describe a Monte Carlo simulation using those results and apply it to the evolution of the scattered disk over 4 Gyr, finding that a final perihelion distance distribution with an extended tail reaching to very large values is to be expected. This would likely result from a single close stellar encounter, in agreement with the conclusion by Morbidelli & Levison (2004). We estimate that the newly discovered minor planet (90377) Sedna may be a typical representative of such an extended scattered disk and that a few more objects of the same size may reside at similar heliocentric distances. There is a possibility that the bulk of the population, which should have smaller perihelion distances, contains some very large objects that may have contributed to sculpting the Kuiper Belt. We also find that the creation of an extended scattered disk by a stellar encounter should have been accompanied by a huge influx of large objects into the inner Solar System, but the timing of the encounter is constrained by the fact that the scattered disk must still have been quite massive. Thus it likely happened long before the purported late heavy bombardment of the terrestrial planets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call