Abstract

ABSTRACT In recent years, a correlation between mass accretion rates onto new-born stars and their protoplanetary disc masses was detected in nearby young star-forming regions. Although such a correlation can be interpreted as due to viscous-diffusion processes in the disc, highly accreting sources with low disc masses in more evolved regions remain puzzling. In this paper, we hypothesize that the presence of a stellar companion truncating the disc can explain these outliers. First, we searched the literature for information on stellar multiplicity in Lupus, Chamaeleon I, and Upper Sco, finding that roughly 20 per cent of the discs involved in the correlation are in binaries or higher order multiple stellar systems. We prove with high statistical significance that at any disc mass these sources have systematically higher accretion rates than those in single-stars, with the bulk of the binary population being clustered around $M_\mathrm{disc}/\dot{M}_\mathrm{acc}\approx 0.1\, \mathrm{Myr}$. We then run coupled gas and dust one-dimensional evolutionary models of tidally truncated discs to be compared with the data. We find that these models are able to reproduce well most of the population of observed discs in Lupus and Upper Sco, even though the unknown eccentricity of each binary prevents an object by object comparison. In the latter region, the agreement improves if the grain coagulation efficiency is reduced, as may be expected in discs around close binaries. Finally, we mention that thermal winds and sub-structures can be important in explaining few outlying sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.