Abstract

A striking characteristic of non-Schwarzschild vacuum exteriors is that they contain not only the total gravitational mass of the source, but also an {\it arbitrary} constant. In this work, we show that the constants appearing in the "temporal Schwarzschild", "spatial Schwarzschild" and "Reissner-Nordstr{\"o}m-like" exteriors are not arbitrary but are completely determined by star's parameters, like the equation of state and the gravitational potential. Consequently, in the braneworld scenario the gravitational field outside of a star is no longer determined by the total mass alone, but also depends on the details of the internal structure of the source. We show that the general relativistic upper bound on the gravitational potential $M/R < 4/9$, for perfect fluid stars, is significantly increased in these exteriors. Namely, $M/R < 1/2$, $M/R < 2/3$ and $M/R < 1$ for the temporal Schwarzschild, spatial Schwarzschild and Reissner-Nordstr{\"o}m-like exteriors, respectively. Regarding the surface gravitational redshift, we find that the general relativistic Schwarzschild exterior as well as the braneworld spatial Schwarzschild exterior lead to the same upper bound, viz., $Z < 2$. However, when the external spacetime is the temporal Schwarzschild metric or the Reissner-Nordstr{\"o}m-like exterior there is no such constraint: $Z < \infty$. This infinite difference in the limiting value of $Z$ is because for these exteriors the effective pressure at the surface is negative. The results of our work are potentially observable and can be used to test the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.