Abstract

Abstract We are reexamining the problem of stellar migration in disk galaxies from a diffusion perspective. We use for the first time the formulation of the diffusion rates introduced by Chirikov, applied to both energy, E, and angular momentum, L z , in self-consistent N-body experiments. We limit our study to the evolution of stellar disks well after the formation of the bar, in a regime of adiabatic evolution. We show that distribution functions of Chirikov diffusion rates have similar shapes, regardless of the simulations, but different slopes for energy and angular momentum. Distribution functions of derived diffusion timescales, T D , also have the same form for all simulations, but are different for T D (E) and T D (L z ). Diffusion timescales are strongly dependent on L z . in a L z range roughly delimited by the set of stellar bar resonances (between the ultraharmonic resonance and the outer Lindblad resonance). Only particles with low L z have , i.e., the simulation length. In terms of mass fraction, 35%–42% turn out to diffuse energy in a characteristic timescale shorter than 10 Gyr, i.e., simulations length, while 60%–64% undergo the diffusion of the angular momentum on the same timescale. Both the diffusion of L z and E are important to grasp the full characterization of the radial migration process, and we show that depending on the spatial region considered, one or the other diffusion dominates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.