Abstract

We infer stellar metallicity and abundance ratio gradients for a sample of red galaxies in the Sloan Digital Sky Survey (SDSS) Main galaxy sample. Because this sample does not have multiple spectra at various radii in a single galaxy, we measure these gradients statistically. We separate galaxies into stellar mass bins, stack their spectra in redshift bins, and calculate the measured absorption line indices in projected annuli by differencing spectra in neighboring redshift bins. After determining the line indices, we use stellar population modeling from the EZ\_Ages software to calculate ages, metallicities, and abundance ratios within each annulus. Our data covers the central regions of these galaxies, out to slightly higher than $1 R_{e}$. We find detectable gradients in metallicity and relatively shallow gradients in abundance ratios, similar to results found for direct measurements of individual galaxies. The gradients are only weakly dependent on stellar mass, and this dependence is well-correlated with the change of $R_e$ with mass. Based on this data, we report mean equivalent widths, metallicities, and abundance ratios as a function of mass and velocity dispersion for SDSS early-type galaxies, for fixed apertures of 2.5 kpc and of 0.5 $R_e$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.