Abstract
Abstract The Milky Way’s metal-poor stars are nearby ancient objects that are used to study early chemical evolution and the assembly and structure of the Milky Way. Here we present reliable metallicities of ∼280,000 stars with −3.75 ≲ [Fe/H] ≲ −0.75 down to g = 17 derived using metallicity-sensitive photometry from the second data release of the SkyMapper Southern Survey. We use the dependency of the flux through the SkyMapper v filter on the strength of the Ca ii K absorption features, in tandem with SkyMapper u, g, i photometry, to derive photometric metallicities for these stars. We find that metallicities derived in this way compare well to metallicities derived in large-scale spectroscopic surveys, and we use such comparisons to calibrate and quantify systematics as a function of location, reddening, and color. We find good agreement with metallicities from the APOGEE, LAMOST, and GALAH surveys, based on a standard deviation of σ ∼ 0.25 dex of the residuals of our photometric metallicities with respect to metallicities from those surveys. We also compare our derived photometric metallicities to metallicities presented in a number of high-resolution spectroscopic studies to validate the low-metallicity end ([Fe/H] < −2.5) of our photometric metallicity determinations. In such comparisons, we find the metallicities of stars with photometric [Fe/H] < −2.5 in our catalog show no significant offset and a scatter of σ ∼ 0.31 dex level relative to those in high-resolution work when considering the cooler stars (g − i > 0.65) in our sample. We also present an expanded catalog containing photometric metallicities of ∼720,000 stars as a data table for further exploration of the metal-poor Milky Way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.