Abstract

ABSTRACT Principles of coronal heating via basic electrodynamic effects, viz., resonant absorption of Alfven surface waves (quiescent) and magnetic tearing instabilities (impulsive), are detailed to argue three principles which may have application to late-type evolved stars. First, if one observes that B-squared/8 pi is much greater than rho times v-squared in a stellar atmosphere, then the observed magnetic field must originate in an interior dynamo. Second, low mass-loss rates could imply the presence of closed magnetic flux loops within the outer atmosphere, which constrain hydrodynamic flows when the magnetic body forces exceed the driving forces. Third, given that such magnetic loops effect an enhancement of the local heating rate, a positive correlation is predicted between the existence of a corona and low mass-loss rates. Application of these principles is made in the case of the peculiar M giant star HD 4174, which is purported to have a kilogauss magnetic field. Several of its spectroscopic peculiarities are shown to be consistent with the above principles, and further observational checks are suggested. Possible application to dMe and RS CVn objects is sketched.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call